
Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Servlet and JSP
Quick

Reference

519

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

A.1 Overview of Servlets and
JavaServer Pages

Advantages of Servlets
• Efficient: threads instead of OS processes, one servlet copy,

persistence
• Convenient: lots of high-level utilities
• Powerful: talking to server, sharing data, pooling, persistence
• Portable: run on virtually all operating systems and servers
• Secure: no shell escapes, no buffer overflows
• Inexpensive: inexpensive plug-ins if servlet support not bundled

Advantages of JSP
• Versus ASP: better language for dynamic part, portable
• Versus PHP: better language for dynamic part
• Versus pure servlets: more convenient to create HTML
• Versus SSI: much more flexible and powerful
• Versus JavaScript: server-side, richer language
• Versus static HTML: dynamic features

Free Servlet and JSP Software
• Tomcat: http://jakarta.apache.org/

520 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• JSWDK: http://java.sun.com/products/servlet/download.html
• JRun: http://www.allaire.com/products/jrun/
• ServletExec: http://newatlanta.com/
• LiteWebServer: http://www.gefionsoftware.com/
• Java Web Server: http://www.sun.com/software/jwebserver/try/

Documentation
• http://java.sun.com/products/jsp/download.html
• http://java.sun.com/products/servlet/2.2/javadoc/
• http://www.java.sun.com/j2ee/j2sdkee/techdocs/api/

Servlet Compilation: CLASSPATH Entries
• The servlet classes (usually in install_dir/lib/servlet.jar)
• The JSP classes (usually in install_dir/lib/jsp.jar, ...jspengine.jar, or

...jasper.jar)
• The top-level directory of servlet installation directory (e.g.,

install_dir/webpages/WEB-INF/classes)

Tomcat 3.0 Standard Directories
• install_dir/webpages/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

Tomcat 3.1 Standard Directories
• install_dir/webapps/ROOT/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

JSWDK 1.0.1 Standard Directories
• install_dir/webpages/WEB-INF/servlets

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

No
te

:i
fy

ou
us

e
To

m
ca

t3
.2

or
4.

x,
se

e
up

da
te

d
in

fo
rm

at
io

n
at

ht
tp

://
ar

ch
iv

e.
co

re
se

rv
le

ts
.c

om
/U

si
ng

-T
om

ca
t.h

tm
l

A.2 First Servlets 521

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Java Web Server 2.0 Standard Directories
• install_dir/servlets

Location for frequently changing servlet classes. Auto-reloading.
• install_dir/classes

Location for infrequently changing servlet classes.
• install_dir/lib

Location for JAR files containing classes.

A.2 First Servlets
Simple Servlet

Installing Servlets
• Put in servlet directories shown in Section A.1.
• Put in subdirectories corresponding to their package.

Invoking Servlets
• http://host/servlet/ServletName
• http://host/servlet/package.ServletName
• Arbitrary location defined by server-specific customization.

HelloWWW.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWW extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello WWW</H1>\n" +
 "</BODY></HTML>");
 }
}

522 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Servlet Life Cycle
• public void init() throws ServletException,

public void init(ServletConfig config) throws ServletException
Executed once when the servlet is first loaded. Not called for each
request. Use getInitParameter to read initialization parameters.

• public void service(HttpServletRequest request,
public void service(HttpServletResponse response)

throws ServletException, IOException
Called in a new thread by server for each request. Dispatches to doGet,
doPost, etc. Do not override this method!

• public void doGet(HttpServletRequest request,
public void doGet(HttpServletResponse response)

throws ServletException, IOException
Handles GET requests. Override to provide your behavior.

• public void doPost(HttpServletRequest request,
public void doPost(HttpServletResponse response)

throws ServletException, IOException
Handles POST requests. Override to provide your behavior. If you want
GET and POST to act identically, call doGet here.

• doPut, doTrace, doDelete, etc.
Handles the uncommon HTTP requests of PUT, TRACE, etc.

• public void destroy()
Called when server deletes servlet instance. Not called after each
request.

• public long getLastModified(HttpServletRequest request)
Called by server when client sends conditional GET due to cached copy.
See Section 2.8.

• SingleThreadModel
If this interface implemented, causes server to avoid concurrent
invocations.

A.3 Handling the Client Request: Form Data 523

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

A.3 Handling the Client Request: Form Data
Reading Parameters
• request.getParameter: returns first value
• request.getParameterValues: returns array of all values

Example Servlet

ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "
 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

524 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Example Form

Filtering HTML-Specific Characters
• Must replace <, >, ", & with <, >, ", and &. Use

ServletUtilities.filter(htmlString) for this substitution.
See Section 3.6.

A.4 Handling the Client Request:
HTTP Request Headers

Methods That Read Request Headers
These are all methods in HttpServletRequest.

• public String getHeader(String headerName)
Returns value of an arbitrary header. Returns null if header not in
request.

• public Enumeration getHeaders(String headerName)
Returns values of all occurrences of header in request. 2.2 only.

• public Enumeration getHeaderNames()
Returns names of all headers in current request.

• public long getDateHeader(String headerName)
Reads header that represents a date and converts it to Java date format
(milliseconds since 1970).

ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>

A.4 Handling the Client Request: HTTP Request Headers 525

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

• public int getIntHeader(String headerName)
Reads header that represents an integer and converts it to an int.
Returns -1 if header not in request. Throws NumberFormatException
for non-ints.

• public Cookie[] getCookies()
Returns array of Cookie objects. Array is zero-length if no cookies. See
Chapter 8.

• public int getContentLength()
Returns value of Content-Length header as int. Returns -1 if
unknown.

• public String getContentType()
Returns value of Content-Type header if it exists in request (i.e., for
attached files) or null if not.

• public String getAuthType()
Returns "BASIC", "DIGEST", "SSL", or null.

• public String getRemoteUser()
Returns username if authentication used; null otherwise.

Other Request Information
• public String getMethod()

Returns HTTP request method ("GET", "POST", "HEAD", etc.)
• public String getRequestURI()

Returns part of the URL that came after host and port.
• public String getProtocol()

Returns HTTP version ("HTTP/1.0" or "HTTP/1.1", usually).

Common HTTP 1.1 Request Headers
See RFC 2616. Get RFCs on-line starting at http://www.rfc-editor.org/.

• Accept: MIME types browser can handle.
• Accept-Encoding: encodings (e.g., gzip or compress) browser can

handle. See compression example in Section 4.4.
• Authorization: user identification for password-protected pages. See

example in Section 4.5. Normal approach is to not use HTTP
authorization but instead use HTML forms to send username/password
and then for servlet to store info in session object.

• Connection: In HTTP 1.0, keep-alive means browser can handle
persistent connection. In HTTP 1.1, persistent connection is default.
Servlets should set Content-Length with setContentLength (using
ByteArrayOutputStream to determine length of output) to support
persistent connections. See example in Section 7.4.

526 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• Cookie: cookies sent to client by server sometime earlier. Use
getCookies, not getHeader. See Chapter 8.

• Host: host given in original URL. This is a required header in HTTP
1.1.

• If-Modified-Since: indicates client wants page only if it has been
changed after specified date. Don’t handle this situation directly;
implement getLastModified instead. See example in Section 2.8.

• Referer: URL of referring Web page.
• User-Agent: string identifying the browser making the request.

A.5 Accessing the Standard CGI Variables
You should usually think in terms of request info, response info, and server
info, not CGI variables.

Capabilities Not Discussed Elsewhere
• getServletContext().getRealPath("uri"): maps URI to real path
• request.getRemoteHost(): name of host making request
• request.getRemoteAddress(): IP address of host making request

Servlet Equivalent of CGI Variables
• AUTH_TYPE: request.getAuthType()
• CONTENT_LENGTH: request.getContentLength()
• CONTENT_TYPE: request.getContentType()
• DOCUMENT_ROOT: getServletContext().getRealPath("/")
• HTTP_XXX_YYY: request.getHeader("Xxx-Yyy")
• PATH_INFO: request.getPathInfo()
• PATH_TRANSLATED: request.getPathTranslated()
• QUERY_STRING: request.getQueryString()
• REMOTE_ADDR: request.getRemoteAddr()
• REMOTE_HOST: request.getRemoteHost()
• REMOTE_USER: request.getRemoteUser()
• REQUEST_METHOD: request.getMethod()
• SCRIPT_NAME: request.getServletPath()
• SERVER_NAME: request.getServerName()
• SERVER_PORT: request.getServerPort()
• SERVER_PROTOCOL: request.getProtocol()
• SERVER_SOFTWARE: getServletContext().getServerInfo()

A.6 Generating the Server Response: HTTP Status Codes 527

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

A.6 Generating the Server Response:
HTTP Status Codes

Format of an HTTP Response
Status line (HTTP version, status code, message), response headers, blank
line, document, in that order. For example:

HTTP/1.1 200 OK

Content-Type: text/plain

Hello World

Methods That Set Status Codes
These are methods in HttpServletResponse. Set status codes before you
send any document content to browser.

• public void setStatus(int statusCode)
Use a constant for the code, not an explicit int.

• public void sendError(int code, String message)
Wraps message inside small HTML document.

• public void sendRedirect(String url)
Relative URLs permitted in 2.2.

Status Code Categories
• 100-199: informational; client should respond with some other action.
• 200-299: request was successful.
• 300-399: file has moved. Usually includes a Location header indicating

new address.
• 400-499: error by client.
• 500-599: error by server.

Common HTTP 1.1 Status Codes
• 200 (OK): Everything is fine; document follows. Default for servlets.
• 204 (No Content): Browser should keep displaying previous

document.
• 301 (Moved Permanently): Requested document permanently

moved elsewhere (indicated in Location header). Browsers go to new
location automatically.

• 302 (Found): Requested document temporarily moved elsewhere
(indicated in Location header). Browsers go to new location
automatically. Servlets should use sendRedirect, not setStatus,
when setting this header. See example in Section 6.3.

528 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• 401 (Unauthorized): Browser tried to access password-protected page
without proper Authorization header. See example in Section 4.5.

• 404 (Not Found): No such page. Servlets should use sendError to set
this header. See example in Section 6.3.

A.7 Generating the Server Response: HTTP
Response Headers

Setting Arbitrary Headers
These are methods in HttpServletResponse. Set response headers before
you send any document content to browser.

• public void setHeader(String headerName, String headerValue)
Sets an arbitrary header.

• public void setDateHeader(String headerName,
long milliseconds)

Converts milliseconds since 1970 to a date string in GMT format.
• public void setIntHeader(String headerName, int headerValue)

Prevents need to convert int to String before calling setHeader.
• addHeader, addDateHeader, addIntHeader

Adds new occurrence of header instead of replacing. 2.2 only.

Setting Common Headers
• setContentType: Sets the Content-Type header. Servlets almost

always use this. See Table 7.1 for the most common MIME types.
• setContentLength: Sets the Content-Length header. Used for

persistent HTTP connections. Use ByteArrayOutputStream to buffer
document before sending it, to determine size. See Section 7.4 for an
example.

• addCookie: Adds a value to the Set-Cookie header. See Chapter 8.
• sendRedirect: Sets the Location header (plus changes status code).

See example in Section 6.3.

Common HTTP 1.1 Response Headers
• Allow: the request methods server supports. Automatically set by the

default service method when servlet receives OPTIONS requests.
• Cache-Control: A no-cache value prevents browsers from caching

results. Send Pragma header with same value in case browser only
understands HTTP 1.0.

• Content-Encoding: the way document is encoded. Browser reverses
this encoding before handling document. Servlets must confirm that

A.7 Generating the Server Response: HTTP Response Headers 529

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

browser supports a given encoding (by checking the Accept-Encoding
request header) before using it. See compression example in
Section 4.4.

• Content-Length: the number of bytes in the response. See
setContentLength above.

• Content-Type: the MIME type of the document being returned. See
setContentType above.

• Expires: the time at which document should be considered out-of-date
and thus should no longer be cached. Use setDateHeader to set this
header.

• Last-Modified: the time document was last changed. Don’t set this
header explicitly; provide a getLastModified method instead. See
example in Section 2.8.

• Location: the URL to which browser should reconnect. Use
sendRedirect instead of setting this header directly. For an example,
see Section 6.3.

• Pragma: a value of no-cache instructs HTTP 1.0 clients not to cache
document. See the Cache-Control response header (Section 7.2).

• Refresh: the number of seconds until browser should reload page. Can
also include URL to connect to. For an example, see Section 7.3.

• Set-Cookie: the cookies that browser should remember. Don’t set this
header directly; use addCookie instead. See Chapter 8 for details.

• WWW-Authenticate: the authorization type and realm client should
supply in its Authorization header in the next request. For an
example, see Section 4.5.

Generating GIF Images from Servlets
• Create an Image.

Use the createImage method of Component.

• Draw into the Image.
Call getGraphics on the Image, then do normal drawing operations.

• Set the Content-Type response header.
Use response.setContentType("image/gif").

• Get an output stream.
Use response.getOutputStream().

• Send the Image down output stream in GIF format.
Use Jef Poskanzer’s GifEncoder. See http://www.acme.com/java/.

530 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

A.8 Handling Cookies
Typical Uses of Cookies
• Identifying a user during an e-commerce session
• Avoiding username and password
• Customizing a site
• Focusing advertising

Problems with Cookies
• It’s a privacy problem, not a security problem.
• Privacy problems include: servers can remember what you did in

previous sessions; if you give out personal information, servers can link
that information to your previous actions; servers can share cookie
information through use of a cooperating third party like
doubleclick.net (by each loading image off the third-party site); poorly
designed sites could store sensitive information like credit card
numbers directly in the cookie.

General Usage
• Sending cookie to browser (standard approach):

Cookie c = new Cookie("name", "value");
c.setMaxAge(...);
// Set other attributes.
response.addCookie(c);

• Sending cookie to browser (simplified approach):
Use LongLivedCookie class (Section 8.5).

• Reading cookies from browser (standard approach):
Cookie[] cookies = response.getCookies();
for(int i=0; i<cookies.length; i++) {
Cookie c = cookies[i];
if (c.getName().equals("someName")) {

doSomethingWith(c);
break;

}
}

• Reading cookies from browser (simplified approach):
Extract cookie or cookie value from cookie array by using
ServletUtilities.getCookie or
ServletUtilities.getCookieValue.

Cookie Methods
• getComment/setComment: gets/sets comment. Not supported in

version 0 cookies (which is what most browsers now support).

A.9 Session Tracking 531

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

• getDomain/setDomain: lets you specify domain to which cookie
applies. Current host must be part of domain specified.

• getMaxAge/setMaxAge: gets/sets the cookie expiration time (in
seconds). If you fail to set this, cookie applies to current browsing
session only. See LongLivedCookie helper class (Section 8.5).

• getName/setName: gets/sets the cookie name. For new cookies, you
supply name to constructor, not to setName. For incoming cookie array,
you use getName to find the cookie of interest.

• getPath/setPath: gets/sets the path to which cookie applies. If
unspecified, cookie applies to URLs that are within or below directory
containing current page.

• getSecure/setSecure: gets/sets flag indicating whether cookie should
apply only to SSL connections or to all connections.

• getValue/setValue: gets/sets value associated with cookie. For new
cookies, you supply value to constructor, not to setValue. For incoming
cookie array, you use getName to find the cookie of interest, then call
getValue on the result.

• getVersion/setVersion: gets/sets the cookie protocol version. Version 0
is the default; stick with that until browsers start supporting version 1.

A.9 Session Tracking
Looking Up Session Information: getValue
HttpSession session = request.getSession(true);
ShoppingCart cart =
(ShoppingCart)session.getValue("shoppingCart");

if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue("shoppingCart", cart);

}
doSomethingWith(cart);

Associating Information with a Session: putValue
HttpSession session = request.getSession(true);
session.putValue("referringPage", request.getHeader("Referer"));
ShoppingCart cart =
(ShoppingCart)session.getValue("previousItems");

if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue("previousItems", cart);

}
String itemID = request.getParameter("itemID");
if (itemID != null) {
cart.addItem(Catalog.getItem(itemID));

}

532 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

HttpSession Methods
• public Object getValue(String name) [2.1]

public Object getAttribute(String name) [2.2]
Extracts a previously stored value from a session object. Returns null if
no value is associated with given name.

• public void putValue(String name, Object value) [2.1]
public void setAttribute(String name, Object value) [2.2]
Associates a value with a name. If value implements
HttpSessionBindingListener, its valueBound method is called. If
previous value implements HttpSessionBindingListener, its
valueUnbound method is called.

• public void removeValue(String name) [2.1]
public void removeAttribute(String name) [2.2]
Removes any values associated with designated name. If value being
removed implements HttpSessionBindingListener, its
valueUnbound method is called.

• public String[] getValueNames() [2.1]
public Enumeration getAttributeNames() [2.2]
Returns the names of all attributes in the session.

• public String getId()
Returns the unique identifier generated for each session.

• public boolean isNew()
Returns true if the client (browser) has never seen the session; false
otherwise.

• public long getCreationTime()
Returns time at which session was first created (in milliseconds since
1970). To get a value useful for printing, pass value to Date constructor
or the setTimeInMillis method of GregorianCalendar.

• public long getLastAccessedTime()
Returns time at which the session was last sent from the client.

• public int getMaxInactiveInterval()
public void setMaxInactiveInterval(int seconds)
Gets or sets the amount of time, in seconds, that a session should go
without access before being automatically invalidated. A negative value
indicates that session should never time out. Not the same as cookie
expiration date.

• public void invalidate()
Invalidates the session and unbinds all objects associated with it.

A.10 JSP Scripting Elements 533

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Encoding URLs
In case servlet is using URL rewriting to implement session tracking, you
should give the system a chance to encode the URLs.

• Regular URLs
String originalURL = someRelativeOrAbsoluteURL;
String encodedURL = response.encodeURL(originalURL);
out.println("...");

• Redirect URLs
String originalURL = someURL; // Relative URL OK in 2.2
String encodedURL = response.encodeRedirectURL(originalURL);
response.sendRedirect(encodedURL);

A.10 JSP Scripting Elements
Types of Scripting Elements
• Expressions: <%= expression %>

Evaluated and inserted into servlet’s output. You can also use
<jsp:expression>
expression
</jsp:expression>

• Scriptlets: <% code %>
Inserted into servlet's _jspService method (called by service). You
can also use

<jsp:scriptlet>
code
</jsp:scriptlet>

• Declarations: <%! code %>
Inserted into body of servlet class, outside of any existing methods. You
can also use

<jsp:declaration>
code
</jsp:declaration>

Template Text
• Use <\% to get <% in output.
• <%-- JSP Comment --%>
• <!-- HTML Comment -->
• All other non-JSP-specific text passed through to output page.

Predefined Variables
Implicit objects automatically available in expressions and scriptlets (not dec-
larations).

• request: the HttpServletRequest associated with request.

534 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• response: the HttpServletResponse associated with response to
client.

• out: the JspWriter (PrintWriter subclass) used to send output to the
client.

• session: the HttpSession object associated with request. See Chapter
9.

• application: the ServletContext as obtained by
getServletConfig().getContext(). Shared by all servlets and JSP
pages on server or in Web application. See Section 15.1.

• config: the ServletConfig object for this page.

• pageContext: the PageContext object associated with current page.
See Section 13.4 for a discussion of its use.

• page: synonym for this (current servlet instance); not very useful now.
Placeholder for future.

A.11 The JSP page Directive: Structuring
Generated Servlets

The import Attribute
• <%@ page import="package.class" %>

• <%@ page import="package.class1,...,package.classN" %>

The contentType Attribute
• <%@ page contentType="MIME-Type" %>

• <%@ page contentType="MIME-Type; charset=Character-Set" %>

• Cannot be invoked conditionally. Use
<% response.setContentType("..."); %> for that.

Example of Using contentType

Excel.jsp

<%@ page contentType="application/vnd.ms-excel" %>
<%-- Note that there are tabs, not spaces, between columns. --%>
1997 1998 1999 2000 2001 (Anticipated)
12.3 13.4 14.5 15.6 16.7

A.11 The JSP page Directive: Structuring Generated Servlets 535

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Example of Using setContentType

The isThreadSafe Attribute
• <%@ page isThreadSafe="true" %> <%!-- Default --%>
• <%@ page isThreadSafe="false" %>
• A value of true means that you have made your code threadsafe and

that the system can send multiple concurrent requests. A value of
false means that the servlet resulting from JSP document will
implement SingleThreadModel (see Section 2.6).

• Non-threadsafe code:
<%! private int idNum = 0; %>

<% String userID = "userID" + idNum;

out.println("Your ID is " + userID + ".");

idNum = idNum + 1; %>

• Threadsafe code:
<%! private int idNum = 0; %>

<% synchronized(this) {

String userID = "userID" + idNum;

out.println("Your ID is " + userID + ".");

idNum = idNum + 1;

} %>

ApplesAndOranges.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- HEAD part removed. -->
<BODY><CENTER><H2>Comparing Apples and Oranges</H2>

<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>
<TABLE BORDER=1>
 <TR><TH></TH><TH>Apples<TH>Oranges
 <TR><TH>First Quarter<TD>2307<TD>4706
 <TR><TH>Second Quarter<TD>2982<TD>5104
 <TR><TH>Third Quarter<TD>3011<TD>5220
 <TR><TH>Fourth Quarter<TD>3055<TD>5287
</TABLE>

</CENTER></BODY></HTML>

536 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

The session Attribute
• <%@ page session="true" %> <%!-- Default --%>
• <%@ page session="false" %>

The buffer Attribute
• <%@ page buffer="sizekb" %>
• <%@ page buffer="none" %>
• Servers can use a larger buffer than you specify, but not a smaller one.

For example, <%@ page buffer="32kb" %> means the document
content should be buffered and not sent to the client until at least 32
kilobytes have been accumulated or the page is completed.

The autoflush Attribute
• <%@ page autoflush="true" %> <%!-- Default --%>
• <%@ page autoflush="false" %>
• A value of false is illegal when buffer="none" is also used.

The extends Attribute
• <%@ page extends="package.class" %>

The info Attribute
• <%@ page info="Some Message" %>

The errorPage Attribute
• <%@ page errorPage="Relative URL" %>
• The exception thrown will be automatically available to the designated

error page by means of the exception variable. See Listings 11.5 and
11.6 for examples.

The isErrorPage Attribute
• <%@ page isErrorPage="true" %>
• <%@ page isErrorPage="false" %> <%!-- Default --%>
• See Listings 11.5 and 11.6 for examples.

The language Attribute
• <%@ page language="cobol" %>
• For now, don't bother with this attribute since java is both the default

and the only legal choice.

A.12 Including Files and Applets in JSP Documents 537

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

XML Syntax
• Usual syntax:

<%@ page attribute="value" %>

<%@ page import="java.util.*" %>
• XML equivalent:

<jsp:directive.page attribute="value" />

<jsp:directive.page import="java.util.*" />

A.12Including Files and Applets in JSP
Documents

Including Files at Page Translation Time
• <%@ include file="Relative URL" %>
• Changing included file does not necessarily cause retranslation of JSP

document. You have to manually change JSP document or update its
modification date. Convenient way:
<%-- Navbar.jsp modified 3/1/00 --%>
<%@ include file="Navbar.jsp" %>

Including Files at Request Time
• <jsp:include page="Relative URL" flush="true" />
• Servlets can use include method of RequestDispatcher to

accomplish similar result. See Section 15.3.
• Because of a bug, you must use .html or .htm extensions for included

files used with the Java Web Server.

Applets for the Java Plug-In: Simple Case
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
</APPLET>

• JSP form for Java Plug-in:
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
</jsp:plugin>

Attributes of jsp:plugin
All attribute names are case sensitive; all attribute values require single or
double quotes.

• type: for applets, this attribute should have a value of applet.

538 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• code: used identically to the CODE attribute of APPLET.
• width: used identically to the WIDTH attribute of APPLET.
• height: used identically to the HEIGHT attribute of APPLET.
• codebase: used identically to the CODEBASE attribute of APPLET.
• align: used identically to the ALIGN attribute of APPLET and IMG.
• hspace: used identically to the HSPACE attribute of APPLET.
• vspace: used identically to the VSPACE attribute of APPLET.
• archive: used identically to the ARCHIVE attribute of APPLET.
• name: used identically to the NAME attribute of APPLET.
• title: used identically to the rare TITLE attribute of APPLET (and

virtually all other HTML elements in HTML 4.0), specifying a title that
could be used for a tool-tip or for indexing.

• jreversion: identifies the version of the Java Runtime Environment
(JRE) that is required. The default is 1.1.

• iepluginurl: designates a URL from which the plug-in for Internet
Explorer can be downloaded.

• nspluginurl: designates a URL from which the plug-in for Netscape
can be downloaded.

Parameters in HTML: jsp:param
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
<PARAM NAME="PARAM1" VALUE="VALUE1">
<PARAM NAME="PARAM2" VALUE="VALUE2">

</APPLET>

• JSP form for Java Plug-In:
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
<jsp:params>

<jsp:param name="PARAM1" value="VALUE1" />
<jsp:param name="PARAM2" value="VALUE2" />

</jsp:params>
</jsp:plugin>

Alternative Text
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
Error: this example requires Java.

</APPLET>

• JSP form for Java Plug-In:
<jsp:plugin type="applet"

A.13 Using JavaBeans with JSP 539

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

 code="MyApplet.class"

 width="475" height="350">

<jsp:fallback>

Error: this example requires Java.

</jsp:fallback>

</jsp:plugin>

• The Java Web Server does not properly handle jsp:fallback.

A.13 Using JavaBeans with JSP
Basic Requirements for Class to be a Bean

1. Have a zero-argument (empty) constructor.

2. Have no public instance variables (fields).
3. Access persistent values through methods called getXxx (or

isXxx) and setXxx.

Basic Bean Use
• <jsp:useBean id="name" class="package.Class" />
• <jsp:getProperty name="name" property="property" />
• <jsp:setProperty name="name" property="property"

value="value" />
The value attribute can take a JSP expression.

Associating Properties with Request Parameters
• Individual properties:

<jsp:setProperty

 name="entry"

 property="numItems"

 param="numItems" />

• Automatic type conversion: for primitive types, performed according
to valueOf method of wrapper class.

• All properties:
<jsp:setProperty name="entry" property="*" />

Sharing Beans: The scope Attribute of
jsp:useBean

Examples of sharing beans given in Chapter 15.
• page

Default value. Indicates that, in addition to being bound to a local
variable, bean object should be placed in PageContext object for
duration of current request.

540 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• application
Means that, in addition to being bound to a local variable, bean will be
stored in shared ServletContext available through predefined
application variable or by a call to getServletContext().

• session
Means that, in addition to being bound to a local variable, bean will be
stored in HttpSession object associated with current request, where it
can be retrieved with getValue.

• request
Signifies that, in addition to being bound to a local variable, bean object
should be placed in ServletRequest object for duration of current
request, where it is available by means of the getAttribute method.

Conditional Bean Creation
• A jsp:useBean element results in a new bean being instantiated only if

no bean with the same id and scope can be found. If a bean with the
same id and scope is found, the preexisting bean is simply bound to the
variable referenced by id.

• You can make jsp:setProperty statements conditional on new bean
creation:

<jsp:useBean ...>
statements

</jsp:useBean>

A.14 Creating Custom JSP Tag Libraries
The Tag Handler Class
• Implement Tag interface by extending TagSupport (no tag body or tag

body included verbatim) or BodyTagSupport (tag body is
manipulated).

• doStartTag: code to run at beginning of tag
• doEndTag: code to run at end of tag
• doAfterBody: code to process tag body

A.14 Creating Custom JSP Tag Libraries 541

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

The Tag Library Descriptor File
• Within taglib element, contains tag element for each tag handler.

E.g.:
<tag>

<name>prime</name>

<tagclass>coreservlets.tags.PrimeTag</tagclass>

<info>Outputs a random N-digit prime.</info>

<bodycontent>EMPTY</bodycontent>

<attribute>

<name>length</name>

<required>false</required>

</attribute>

</tag>

The JSP File
• <%@ taglib uri="some-taglib.tld" prefix="prefix" %>
• <prefix:tagname />
• <prefix:tagname>body</prefix:tagname>

Assigning Attributes to Tags
• Tag handler:

Implements setXxx for each attribute xxx.
• Tag Library Descriptor:

<tag>

...

<attribute>

<name>length</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue> <%-- sometimes --%>

</attribute>

</tag>

Including the Tag Body
• Tag handler:

You should return EVAL_BODY_INCLUDE instead of SKIP_BODY from
doStartTag.

• Tag Library Descriptor:
<tag>

...

<bodycontent>JSP</bodycontent>

</tag>

542 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Optionally Including the Tag Body
• Tag handler:

Return EVAL_BODY_INCLUDE or SKIP_BODY at different times,
depending on value of request time parameter.

Manipulating the Tag Body
• Tag handler:

You should extend BodyTagSupport, implement doAfterBody. Call
getBodyContent to get BodyContent object describing tag body.
BodyContent has three key methods: getEnclosingWriter,
getReader, and getString. Return SKIP_BODY from doAfterBody.

Including or Manipulating the Tag Body
Multiple Times
• Tag handler:

To process body again, return EVAL_BODY_TAG from doAfterBody. To
finish, return SKIP_BODY.

Using Nested Tags
• Tag handler:

Nested tags can use findAncestorWithClass to find the tag in which
they are nested. Place data in field of enclosing tag.

• Tag Library Descriptor:
Declare all tags separately, regardless of nesting structure in real page.

A.15 Integrating Servlets and JSP

Big Picture
• Servlet handles initial request, reads parameters, cookies, session

information, etc.

• Servlet then does whatever computations and database lookups are
needed.

• Servlet then stores data in beans.

• Servlet forwards request to one of many possible JSP pages to present
final result.

• JSP page extracts needed values from beans.

A.15 Integrating Servlets and JSP 543

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Request Forwarding Syntax
String url = "/path/presentation1.jsp";

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(url);

dispatcher.forward();

Forwarding to Regular HTML Pages
• If initial servlet handles GET requests only, no change is necessary.
• If initial servlet handles POST, then change destination page from

SomePage.html to SomePage.jsp so that it, too, can handle POST.

Setting Up Globally Shared Beans
• Initial servlet:

Type1 value1 = computeValueFromRequest(request);

getServletContext().setAttribute("key1", value1);

• Final JSP document:
<jsp:useBean id="key1" class="Type1" scope="application" />

Setting Up Session Beans
• Initial servlet:

Type1 value1 = computeValueFromRequest(request);

HttpSession session = request.getSession(true);

session.putValue("key1", value1);

• Final JSP document:
<jsp:useBean id="key1" class="Type1" scope="session" />

Interpreting Relative URLs in the Destination
Page
• URL of original servlet is used for forwarded requests. Browser does

not know real URL, so it will resolve relative URLs with respect to
original servlet’s URL.

Getting a RequestDispatcher by Alternative
Means (2.2 Only)
• By name: use getNamedDispatcher method of ServletContext.
• By path relative to initial servlet’s location: use the

getRequestDispatcher method of HttpServletRequest rather than
the one from ServletContext.

544 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Including Static or Dynamic Content
• Basic usage:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("...");

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/path/resource");

dispatcher.include(request, response);

out.println("...");

• JSP equivalent is jsp:include, not the JSP include directive.

Forwarding Requests from JSP Pages
• <jsp:forward page="Relative URL" />

A.16 Using HTML Forms

The FORM Element
• Usual form:

<FORM ACTION="URL" ...> ... </FORM>
• Attributes: ACTION (required), METHOD, ENCTYPE, TARGET, ONSUBMIT,

ONRESET, ACCEPT, ACCEPT-CHARSET

Textfields
• Usual form:

<INPUT TYPE="TEXT" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS,
ONKEYUP

• Different browsers have different rules regarding the situations where
pressing Enter in a textfield submits the form. So, include a button or
image map that submits the form explicitly.

Password Fields
• Usual form:

<INPUT TYPE="PASSWORD" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS,
ONKEYUP

• Always use POST with forms that contain password fields.

A.16 Using HTML Forms 545

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Text Areas
• Usual form:

<TEXTAREA NAME="..." ROWS=xxx COLS=yyy> ...

Some text

</TEXTAREA>
• Attributes: NAME (required), ROWS (required), COLS (required), WRAP

(nonstandard), ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN,
ONKEYPRESS, ONKEYUP

• White space in initial text is maintained and HTML markup between
start and end tags is taken literally, except for character entities such as
<, ©, and so forth.

Submit Buttons
• Usual form:

<INPUT TYPE="SUBMIT" ...> (no end tag)
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• When a submit button is clicked, the form is sent to the servlet or other

server-side program designated by the ACTION parameter of the FORM.

Alternative Push Buttons
• Usual form:

<BUTTON TYPE="SUBMIT" ...>

HTML Markup

</BUTTON>
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.

Reset Buttons
• Usual form:

<INPUT TYPE="RESET" ...> (no end tag)
• Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

Except for VALUE, attributes are only for use with JavaScript.

Alternative Reset Buttons
• Usual form:

<BUTTON TYPE="RESET" ...>

HTML Markup

</BUTTON>
• Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.

546 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

JavaScript Buttons
• Usual form:

<INPUT TYPE="BUTTON" ...> (no end tag)
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

Alternative JavaScript Buttons
• Usual form:

<BUTTON TYPE="BUTTON" ...>

HTML Markup

</BUTTON>
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.

Check Boxes
• Usual form:

<INPUT TYPE="CHECKBOX" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, CHECKED, ONCLICK, ONFOCUS,

ONBLUR
• Name/value transmitted only if check box is checked.

Radio Buttons
• Usual form:

<INPUT TYPE="RADIO" NAME="..." VALUE="..." ...>
(no end tag)

• Attributes: NAME (required), VALUE (required), CHECKED, ONCLICK,
ONFOCUS, ONBLUR

• You indicate a group of radio buttons by providing all of them with the
same NAME.

Combo Boxes
• Usual form:

<SELECT NAME="Name" ...>

<OPTION VALUE="Value1">Choice 1 Text

<OPTION VALUE="Value2">Choice 2 Text

...

<OPTION VALUE="ValueN">Choice N Text

</SELECT>
• SELECT Attributes: NAME (required), SIZE, MULTIPLE, ONCLICK,

ONFOCUS, ONBLUR, ONCHANGE
• OPTION Attributes: SELECTED, VALUE

A.17 Using Applets As Servlet Front Ends 547

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

File Upload Controls
• Usual form:

<INPUT TYPE="FILE" ...> (no end tag)
• Attributes: NAME (required), VALUE (ignored), SIZE, MAXLENGTH,

ACCEPT, ONCHANGE, ONSELECT, ONFOCUS, ONBLUR (nonstandard)
• Use an ENCTYPE of multipart/form-data in the FORM declaration.

Server-Side Image Maps
• Usual form:

<INPUT TYPE="IMAGE" ...> (no end tag)
• Attributes: NAME (required), SRC, ALIGN
• You can also provide an ISMAP attribute to a standard IMG element that

is inside an <A HREF...> element.

Hidden Fields
• Usual form:

<INPUT TYPE="HIDDEN" NAME="..." VALUE="..."> (no end tag)
• Attributes: NAME (required), VALUE

Internet Explorer Features
• FIELDSET (with LEGEND): groups controls
• TABINDEX: controls tabbing order
• Both capabilities are part of HTML 4.0 spec; neither is supported by

Netscape 4.

A.17 Using Applets As Servlet Front Ends

Sending Data with GET and Displaying the
Resultant Page
String someData =

name1 + "=" + URLEncoder.encode(val1) + "&" +

name2 + "=" + URLEncoder.encode(val2) + "&" +

...

nameN + "=" + URLEncoder.encode(valN);

try {

URL programURL = new URL(baseURL + "?" + someData);

getAppletContext().showDocument(programURL);

} catch(MalformedURLException mue) { ... }

548 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Sending Data with GET and Processing the
Results Directly (HTTP Tunneling)

1. Create a URL object referring to applet’s home host. You usu-
ally build a URL based upon the hostname from which the applet
was loaded.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL = new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data.
connection.setUseCaches(false);

4. Set any desired HTTP headers. If you want to set HTTP
request headers (see Chapter 4), you can use setRequest-
Property to do so.
connection.setRequestProperty("header", "value");

5. Create an input stream. There are several appropriate
streams, but a common one is BufferedReader. It is at the
point where you create the input stream that the connection to
the Web server is actually established behind the scenes.
BufferedReader in =
new BufferedReader(new InputStreamReader(

connection.getInputStream()));

6. Read each line of the document. Simply read until you get
null.
String line;
while ((line = in.readLine()) != null) {
doSomethingWith(line);

}

7. Close the input stream.
in.close();

A.17 Using Applets As Servlet Front Ends 549

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Sending Serialized Data: The Applet Code
1. Create a URL object referring to the applet’s home host. It is

best to specify a URL suffix and construct the rest of the URL
automatically.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL = new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data.
connection.setUseCaches(false);

4. Set any desired HTTP headers.
connection.setRequestProperty("header", "value");

5. Create an ObjectInputStream. The constructor for this class
simply takes the raw input stream from the URLConnection.
ObjectInputStream in =
new ObjectInputStream(connection.getInputStream());

6. Read the data structure with readObject. The return type
of readObject is Object, so you need to make a typecast to
whatever more specific type the server actually sent.
SomeClass value = (SomeClass)in.readObject();
doSomethingWith(value);

7. Close the input stream.
in.close();

Sending Serialized Data: The Servlet Code
1. Specify that binary content is being sent. To do so, designate

application/x-java-serialized-object
as the MIME type of the response. This is the standard MIME
type for objects encoded with an ObjectOutputStream,
although in practice, since the applet (not the browser) is reading
the result, the MIME type is not very important. See the discus-
sion of Content-Type in Section 7.2 for more information on
MIME types.
String contentType =
"application/x-java-serialized-object";

response.setContentType(contentType);

550 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2. Create an ObjectOutputStream.
ObjectOutputStream out =
new ObjectOutputStream(response.getOutputStream());

3. Write the data structure by using writeObject. Most
built-in data structures can be sent this way. Classes you write,
however, must implement the Serializable interface.
SomeClass value = new SomeClass(...);
out.writeObject(value);

4. Flush the stream to be sure all content has been sent to
the client.
out.flush();

Sending Data by POST and Processing the
Results Directly (HTTP Tunneling)

1. Create a URL object referring to the applet’s home host. It is
best to specify a URL suffix and construct the rest of the URL
automatically.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL =
new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the results.
connection.setUseCaches(false);

4. Tell the system to permit you to send data, not just read
it.
connection.setDoOutput(true);

5. Create a ByteArrayOutputStream to buffer the data that
will be sent to the server. The purpose of the ByteArray-
OutputStream here is the same as it is with the persistent
(keep-alive) HTTP connections shown in Section 7.4 — to
determine the size of the output so that the Content-Length
header can be set.
ByteArrayOutputStream byteStream =
new ByteArrayOutputStream(512);

6. Attach an output stream to the ByteArrayOutputStream.
Use a PrintWriter to send normal form data. To send serial-
ized data structures, use an ObjectOutputStream instead.
PrintWriter out = new PrintWriter(byteStream, true);

A.17 Using Applets As Servlet Front Ends 551

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

7. Put the data into the buffer. For form data, use print. For
high-level serialized objects, use writeObject.
String val1 = URLEncoder.encode(someVal1);
String val2 = URLEncoder.encode(someVal2);
String data = "param1=" + val1 +

"¶m2=" + val2; // Note ’&’
out.print(data); // Note print, not println
out.flush(); // Necessary since no println used

8. Set the Content-Length header. This header is required for
POST data, even though it is unused with GET requests.
connection.setRequestProperty
("Content-Length", String.valueOf(byteStream.size()));

9. Set the Content-Type header. Netscape uses multi-
part/form-data by default, but regular form data requires a
setting of application/x-www-form-urlencoded, which is
the default with Internet Explorer. So, for portability you should
set this value explicitly when sending regular form data. The
value is irrelevant when you are sending serialized data.
connection.setRequestProperty
("Content-Type", "application/x-www-form-urlencoded");

10. Send the real data.
byteStream.writeTo(connection.getOutputStream());

11. Open an input stream. You typically use a BufferedReader
for ASCII or binary data and an ObjectInputStream for serial-
ized Java objects.
BufferedReader in =
new BufferedReader(new InputStreamReader

(connection.getInputStream()));

12. Read the result.
The specific details will depend on what type of data the server
sends. Here is an example that does something with each line
sent by the server:
String line;
while((line = in.readLine()) != null) {
doSomethingWith(line);

}

Bypassing the HTTP Server
Applets can talk directly to servers on their home host, using any of:

• Raw sockets
• Sockets with object streams
• JDBC
• RMI
• Other network protocols

552 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

A.18 JDBC and Database Connection Pooling
Basic Steps in Using JDBC

1. Load the JDBC driver. See http://java.sun.com/prod-
ucts/jdbc/drivers.html for available drivers. Example:
Class.forName("package.DriverClass");
Class.forName("oracle.jdbc.driver.OracleDriver");

2. Define the connection URL. The exact format will be
defined in the documentation that comes with the particular
driver.
String host = "dbhost.yourcompany.com";
String dbName = "someName";
int port = 1234;
String oracleURL = "jdbc:oracle:thin:@" + host +

":" + port + ":" + dbName;
String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" + "?SERVICENAME=" +
dbName;

3. Establish the connection.
String username = "jay_debesee";
String password = "secret";
Connection connection =
DriverManager.getConnection(oracleURL, username, password)

An optional part of this step is to look up information about the
database by using the getMetaData method of Connection. This
method returns a DatabaseMetaData object which has methods
to let you discover the name and version of the database itself
(getDatabaseProductName, getDatabaseProductVersion)
or of the JDBC driver (getDriverName, getDriverVersion).

4. Create a statement object.
Statement statement = connection.createStatement();

5. Execute a query or update.
String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

6. Process the results. Use next to get a new row. Use
getXxx(index) or getXxx(columnName) to extract values
from a row. First column has index 1, not 0.
while(resultSet.next()) {
 System.out.println(results.getString(1) + " " +
 results.getString(2) + " " +
 results.getString(3));
}

7. Close the connection.
connection.close();

A.18 JDBC and Database Connection Pooling 553

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Database Utilities
These are static methods in the DatabaseUtilities class (Listing 18.6).

• getQueryResults
Connects to a database, executes a query, retrieves all the rows as arrays
of strings, and puts them inside a DBResults object (see Listing 18.7).
Also places the database product name, database version, the names of
all the columns and the Connection object into the DBResults object.
There are two versions of getQueryResults: one makes a new
connection, the other uses an existing connection. DBResults has a
simple toHTMLTable method that outputs result in HTML, which can
be used as either a real HTML table or as an Excel spreadsheet (see
Section 11.2).

• createTable
Given a table name, a string denoting the column formats, and an array
of strings denoting the row values, this method connects to a database,
removes any existing versions of the designated table, issues a CREATE
TABLE command with the designated format, then sends a series of
INSERT INTO commands for each of the rows. Again, there are two
versions: one makes a new connection, and the other uses an existing
connection.

• printTable
Given a table name, this method connects to the specified database,
retrieves all the rows, and prints them on the standard output. It
retrieves the results by turning the table name into a query of the form
“SELECT * FROM tableName” and passing it to getQueryResults.

• printTableData
Given a DBResults object from a previous query, this method prints it
on the standard output. This is the underlying method used by
printTable, but it is also useful for debugging arbitrary database
results.

Prepared Statements (Precompiled Queries)
• Use connection.prepareStatement to make precompiled form.

Mark parameters with question marks.
String template =
"UPDATE employees SET salary = ? WHERE id = ?";

PreparedStatement statement =
connection.prepareStatement(template);

• Use statement.setXxx to specify parameters to query.
statement.setFloat(1, 1.234);

statement.setInt(2, 5);

554 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

• Use execute to perform operation.
statement.execute();

Steps in Implementing Connection Pooling
If you don’t care about implementation details, just use the ConnectionPool
class developed in Chapter 18. Otherwise, follow these steps.

1. Preallocate the connections.
Perform this task in the class constructor. Call the constructor
from servlet’s init method. The following code uses vectors to
store available idle connections and unavailable, busy connec-
tions.
availableConnections = new Vector(initialConnections);
busyConnections = new Vector();
for(int i=0; i<initialConnections; i++) {
availableConnections.addElement(makeNewConnection());

}

2. Manage available connections.
If a connection is required and an idle connection is available,
put it in the list of busy connections and then return it. The busy
list is used to check limits on the total number of connections as
well as when the pool is instructed to explicitly close all connec-
tions. Discarding a connection opens up a slot that can be used
by processes that needed a connection when the connection
limit had been reached, so use notifyAll to tell all waiting
threads to wake up and see if they can proceed.
public synchronized Connection getConnection()

throws SQLException {
if (!availableConnections.isEmpty()) {

Connection existingConnection =
(Connection)availableConnections.lastElement();

int lastIndex = availableConnections.size() - 1;
availableConnections.removeElementAt(lastIndex);
if (existingConnection.isClosed()) {
notifyAll(); // Freed up a spot for anybody waiting.
return(getConnection()); // Repeat process.

} else {
busyConnections.addElement(existingConnection);
return(existingConnection);

}
}

}

3. Allocate new connections.
If a connection is required, there is no idle connection available,
and the connection limit has not been reached, then start a

A.18 JDBC and Database Connection Pooling 555

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

background thread to allocate a new connection. Then, wait for
the first available connection, whether or not it is the newly allo-
cated one.
if ((totalConnections() < maxConnections) &&

!connectionPending) { // Pending = connecting in bg
makeBackgroundConnection();
try {

wait(); // Give up lock and suspend self.

} catch(InterruptedException ie) {}
return(getConnection()); // Try again.

4. Wait for a connection to become available.
This situation occurs when there is no idle connection and
you’ve reached the limit on the number of connections. This
waiting should be accomplished without continual polling. It is
best to use the wait method, which gives up the thread syn-
chronization lock and suspends the thread until notify or
notifyAll is called.
try {
wait();

} catch(InterruptedException ie) {}
return(getConnection());

5. Close connections when required.
Note that connections are closed when they are garbage col-
lected, so you don’t always have to close them explicitly. But,
you sometimes want more explicit control over the process.
public synchronized void closeAllConnections() {
// The closeConnections method loops down Vector, calling
// close and ignoring any exceptions thrown.
closeConnections(availableConnections);
availableConnections = new Vector();
closeConnections(busyConnections);

busyConnections = new Vector();
}

Connection pool timing results

Condition Average Time

Slow modem connection to database, 10
initial connections, 50 max connections
(ConnectionPoolServlet)

11 seconds

Slow modem connection to database,
recycling a single connection
(ConnectionPoolServlet2)

22 seconds

556 Appendix A Servlet and JSP Quick Reference

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Slow modem connection to database, no con-
nection pooling (ConnectionPoolServlet3)

82 seconds

Fast LAN connection to database, 10 initial
connections, 50 max connections
(ConnectionPoolServlet)

1.8 seconds

Fast LAN connection to database, recycling a
single connection
(ConnectionPoolServlet2)

2.0 seconds

Fast LAN connection to database, no connec-
tion pooling (ConnectionPoolServlet3)

2.8 seconds

Connection pool timing results

Condition Average Time

